QV250

非常感謝您購買 QV250 視覺量測系統,為確保您可安全且有效率的使用本系統,請在操作前先耐心研讀本手冊,並容我們提醒您下列幾點:

- ▶ 請放置本產品於安全平坦處,切莫置於不平整處或有掉落危險的地方。
- ▶ 請勿使用非原廠提供的配件,如不良之電源線與 USB 訊號線等。
- ▶ 請勿自行調整或拆卸產品零件。
- ▶ 請放置本產品於通風較佳處。
- ▶ 本產品提供一年的保固,在保固期限內,本公司負維修之責。但若故 障肇因於天災、戰爭或操作不當等因素,則不在此限。

目錄

目錄	
第1章 安裝QV250 系統	1-1
系統需求	1-2
硬體需求	1-2
軟體需求	1-2
系統規格	1-2
機台安裝	1-4
安裝QV250(以Windows XP爲例)	1-4
軟體安裝	1-4
軟體移除	1-9
光學尺訊號讀取卡驅動程式安裝	1-11
第 2 章 QV250 使用者介面	2-1
座標顯示	2-2
X.Y 切換至笛卡兒直角座標系	2-2
τ,θ 切换至極座標系	2-2
҈ 切換至公制:釐米;公釐	2-2
ⁱⁿ 切換至英制:英吋	2-2
^{d,d} 切換至十進制角度	2-2
dms 切換至度、分、秒	2-3
[@] 歸Home(手動版)	2-3
abs ine 切換絕對與相對座標(此按鈕下沉時為相對座標)	2-3
◎將目前 X 與 Y 座標設為 0,建立相對座標系	2-3
☑取消目前的相對座標,回到絕對座標	2-3
③ : 多點輸入之點數設定	
00:000 在分號之前的代表點數;分號之後的代表物件數。	2-3
物件列表	2-3
影像量測	2-4
■ CCD設定	2-4

●攝影	2-5
■取像	2-5
※∞○○○●物件量測	2-5
□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□□	2-7
■ ■ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	2-9
/ ▮◎ሮ◎量測工具	2-9
€鎖住回歸物件	
■影像黑白互换	2-11
●影像處理設定	2-11
➡清圖	2-12
➡顯示尺規	2-12
幾何量測	2-12
№ 復原	2-13
框選視窗	2-13
□最適化視窗	2-13
➤刪除	2-13
▼框選刪除	2-13
* 點	2-13
/直線	2-14
〇圓	2-14
○弧	2-14
○橢圓	2-14
~ B-Spline曲線	2-15
~回歸直線	
點群	2-15
→ 丙點連線中點	2-15
♪點線距離	
△點圓切線	
※兩線交點	
※ 角平分線	2-16

□ 丙線平均距離	2-16
◎圓線交點	2-17
◎雨圓交點	2-17
◎雨圓心距離	2-17
҈ 雨圓外切線	2-17
▲ 輸入座標	2-18
³⁴ 顯示資料群組編號	2-18
□ 顯示十字線	2-18
下拉主選單	2-20
檔案	2-20
■建立新專案	2-20
■開啓舊專案	2-20
■儲存專案	2-20
另存爲新專案	2-20
DXF 匯出DXF格式	2-20
™ 匯出至Word	2-20
■ 進出至Excel	2-20
结束	2-20
座標轉換	2-20
└─機械原點	2-20
└ 座標平移	2-21
[↓] ・	2-21
↓ 雨點決定 Y 軸	2-21
₩座標旋轉	2-22
₩線點交點 1	2-22
₩ 線點交點 2	2-22
+ 二點中點	
∠ 二線交點	
些再次平移座標	
校正處理	

	(1) (4)	3性校正:以線性的方法校正。	2-24
	■ 載	入校正參數:讀取某一組特定焦距的校正參數。	2-24
	拳 載	(入校正檔 1。	2-24
	◆ 載	入校正檔 2。	2-24
	҈≢	入校正檔 3。	2-24
	拳 載	入校正檔 4。	2-24
	◎校	正參數存檔:將目前焦距的校正參數存檔。	2-24
	●儲	音存校正檔 1。	2-24
	҈╈儲	音存校正檔 2。	2-24
	҈₩儲	音存校正檔 3。	2-24
	❤儲	音存校正檔 4。	2-24
		語言	2-24
	英E	nglish	2-24
	繁 Ti	riditional Chinese	2-24
	簡 Si	implified Chinese	2-24
		說明	2-25
	② Q	V250 說明	2-25
	₹ 縣	於 3DFAMILY	2-25
	Q]於QV250	2-25
第	3 章	基本系統操作	. 3-1
	量測	前置作業	. 3-2
		啓動系統	. 3-2
		影像校正	. 3-3
	線性	.校正	. 3-3
		離開系統	. 3-4
		量測前置作業	. 3-4
		開始量測	. 3-5
		儲存量測資料	
第	4 章	檢測	
	檢測		4-2

快速入門	4-2
詳細流程解說	4-2
SPC功能鍵	4-8
實例演練	4-10
分析數據	4-12
圖形數據	4-12
平均值與全距管制圖(X-R)	4-12
中位值與全距管制圖(Xm-R)	4-13
個別值與移動全距管制圖(X-Rm)	4-13
平均值與標準差管制圖(X-S)	4-14
資料表格	4-14
第5章 量測實例	5-1
手機外殼抄數(背光)	5-2
手機外殼內緣特徵線抄數(前光)	5-4
電路板檢測	5-4
有夾具	5-4
沒有夾具	5-5
第6章 簡易問題排除	6-1

第1章 安裝 QV250 系統

本章介紹 QV250 的系統需求與規格。透過本章的介紹,您可瞭解 QV250 系統各部分的功能與作用。此外,本章亦將一步步引導您安裝 QV250 系統所須的軟、硬體。

本章重點為:

- ▶ QV250 系統需求
- ▶ QV250 系統規格
- ➢ 安裝 QV250
- > 安裝各型驅動程式

系統需求

QV250 系統為一專業的軟硬體整合系統,須搭配的適當的電腦配備,方能發揮最好的效能。因此,強烈建議您,在安裝 QV250 系統前,先行確認您的電腦配備符合下列的系統最小需求。若您的配備無法符合 QV250 系統的最小需求,則系統效能可能會受影響。

硬體需求

CPU: Pentium 級以上主機 (建議使用 Pentium III 級以上)

RAM-記憶體:至少 64MB 以上 (建議使用 128MB 以上)

HD-硬碟:剩餘空間至少有 50MB 以上的儲存空間

Printer-印表機(選擇配備,列印報表資料時必須使用)

OS-作業系統: Windows98、98SE、2000、Me 或 XP 中文版

螢幕色彩品質需為32位元

輸出入裝置:USB序列埠 X1(手動版)

軟體需求

專業量測軟體 QV250

光學尺驅動程式

系統規格

 QV250 量測機台
 一台

 (含一條 USB 線及一條影像訊號線)
 一條

 QV250 量測機台電源線
 一條

 影像校正片
 一片

 Pentium IV 電腦
 一台

 QV250 量測系統安裝光碟
 一片

QV250 操作使用手册

一本

QV250 系列(手動版)

型號	QV250
操作方式	手動
行程(X, Y)(mm)	250x150
調焦(Z)(mm)	250
載物台尺寸(mm)	420x310
承載重量(kg)	50
外型尺寸(mm)	550x630x900
儀器重量(kg)	200

- 1. 影像系統:高解析彩色攝影機、高解析 Telectric Len
- 2. 光學尺: X, Y, Z 軸 (Z 軸選配) 解析度 1μ
- 3. XY 軸線性精度: (3+L/200)μm
- 4. 放大倍率:光學倍率 0.7X~4.5 (螢幕倍率 28~180X);選配:0.5X, 2X, 10X, 20X, 50X, 100X 物鏡
- 5. 光源:AC 220V
- 6. 重複精度:2µ
- 7. 基座:高精度花崗岩平台
- 8. Z軸基座:高精度花崗岩

機台安裝

安裝 QV250 (以 Windows XP 爲例)

軟體安裝

- 1. 開啓電腦,進入 Windows XP。
- 2. 將光碟片放入光碟機中,光碟片將會自動安裝程式。若沒有自動安裝, 請開啟『我的電腦』,點選光碟機,用滑鼠雙擊『setup.exe』。

3. 進入安裝畫面,按『下一步』繼續,如圖。

4. 進入安裝畫面,按『下一步』繼續,如圖。

5. 依照指示輸入姓名及公司名稱,輸入完畢後按『下一步』繼續。

6. 您可以按『變更』自行變更系統目錄,或依照預設目錄安裝,決定後 按『下一步』繼續。

7. 請按『安裝』進行安裝系統。

8. 複製及安裝系統進行中。

9. 系統安裝完成,按『完成』以結束安裝程式。

安裝完畢之後,在桌面自動建立一捷徑 (NY250 臺灣) 利用滑鼠雙擊該捷徑即可執行程式;或者您也可以從『開始 | 所有程式 | 3DFAMILY | QV250 | QV250 量測系統』執行本系統。

軟體移除

1. 自動移除系統

1. 執行『開始 | 所有程式 | 3DFAMILY | QV250 | 移除 QV250 量測系統 』。

2. 請按『是』以確定移除本系統。

3. 正在移除本系統。

2. 手動移除系統

1. 執行『開始 | 控制台』。

2. 在『控制台』裏面選擇『新增或移除程式』。

3. 找到『QV250 量測系統』之後,請按『移除』。

4. 請按『是』以確定移除本系統。

5. 正在移除本系統。

光學尺訊號讀取卡驅動程式安裝

- 1. 將 QV250 機台的 USB 線插入電腦。
- 2. 出現『找到新硬體』。
- 3. 按『下一步』繼續。

4. 光學尺訊號讀取卡驅動程式安裝中。

5. 按『完成』結束安裝。

6. 若是無法正常安裝,請在第三步驟選擇『從清單或特定位置安裝』。

7. 在 QV250 的安裝目錄內(預設值是在 C:\Program Files\3DFAMILY\QV250)內找到『Scale_driver』目錄,並點選 SCALEUSB.INF 後按『下一步』繼續。

8. 若是出現下列對話方塊時,請按『瀏覽』並選擇按 QV250 的安裝目錄內(預設值是在 C:\Program Files\3DFAMILY\QV250)內找到『Scale_driver』目錄,並點選 GUsbDD.sys 後按『下一步』繼續。

9. 光學尺訊號讀取卡驅動程式安裝中。

10. 按『完成』結束安裝。

第2章 QV250 使用者介面

本章提供您進入 QV250 系統的第一步。藉由本章,您可清楚瞭解 QV250 的視窗環境與功能,作為學習後續章節的基礎。

本章重點為:

- > 認識 QV250 的視窗環境
- ▶ QV250 的功能列表

QV250 的版面配置由下拉主選單、下拉功能表及彈跳式對話框所構成,如此的設計提供一個簡單明瞭而且強大的介面。本章將先介紹影像量測

- 1. 下拉主選單
- 2. 座標顯示可以知道目前量測平台的位置、單位
- 3. 燈光控制可以控制四象表面光及輪廓光(選配)
- 4. 物件列表將所有的量測單元及屬性列出
- 5. 幾何量測可以看見工件的幾何構成圖
- 6. 影像量測可以看見工件的實際影像
- 7. 圖示快速鍵將常用的功能顯示出來
- 8. 檢測可以錄製巨集,進行 SPC 等等

座標顯示

笛卡兒直角座標系

X: X 座標,雙擊滑鼠左鍵將目前的 X 座標設定為 0

Y:Y 座標,雙擊滑鼠左鍵將目前的Y座標設定為0

Z:Z 座標(鏡頭高度)

極座標系

r:半徑

: 角度

- XY 切換至笛卡兒直角座標系
- γ,θ 切換至極座標系
- 切換至公制:釐米;公釐
- □ 切換至英制:英吋□ 切換至十進制角度

如 切換至度、分、秒

(0,0) 歸 Home(手動版)

前後左右移動量測平台以尋找絕對原點(手動版)

- △將目前 X 與 Y 座標設為 0,建立相對座標系
- ✓取消目前的相對座標,回到絕對座標
- 参多點輸入之點數設定
- 00:000 在分號之前的代表點數;分號之後的代表物件數。

例如按下『幾何量測』的『兩圓心距離』^②,會顯示<mark>0/6:0/2</mark>,表示『兩圓心 距離』需要輸入兩個物件,一共六個點。

例如按下『幾何量測』的『點線距離』[→],會顯示<mark>0/3:0/2</mark>,表示『點線距離』 需要輸入兩個物件,一共三個點。

物件列表

○ [50]@ ○ [51]@	^		物件	56 : ■		
[52]圓		內容	測量値	標準値	超出公差	^
○ [53]圖 ○ [54]圖		圖心×	173.442			-1
[55]		圖心Y	-197.878			
○ [56]圓 ○ [57]圓	_	直徑	0.709			
[58]		半徑	0.355			
(59) (A) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	~	大半徑	0.369			~

對物件列表的某物件按下滑鼠左鍵,左邊會即時出現該物件的屬性。 對物件列表按下滑鼠右鍵,會出現下列快速功能表。

刪除(₩) 全部刪除(X) 復原(Y) 呼出輸入(Z)

刪除: 先用滑鼠左鍵點選欲刪除的資料,再按下滑鼠右鍵,等出現快速功能表時,點選刪除即可將選中的資料刪除。

全部刪除:對物件列表按下滑鼠右鍵,等出現快速功能表時,點選全部刪除即可將全部的資料刪除。

復原:對物件列表按下滑鼠右鍵,等出現快速功能表時,點選復原,即可 救回上一筆刪除的資料。

呼出輸入:先用滑鼠左鍵點選欲呼出的資料,再按下滑鼠右鍵,等出現快速功能表時,點選呼出輸入即可將選中的資料加入。

影像量測

影像量測視窗顯示量測工件的即時實際影像,根據工件的不同,我們可以 用輪廓光或表面光影像量測來達到最佳的量測效果。

● 輪廓光影像量測

當量測工件有透孔時,我們使用輪廓光影像量測。

● 表面光影像量測

當量測工件沒有透孔時,我們使用表面光影像量測。

🙀 CCD 設定

設定攝影機的參數。

●攝影

在『影像量測』視窗及時動態顯示攝影畫面。

取像

在『影像量測』視窗擷取一張圖存成 bmp 或 jpg 檔。

※∞∞∞ 物件量測

物件點群量測:用滑鼠左鍵在『影像量測』視窗中點一下,QV250 會自動將該畫面的點群資料顯示出來(只會顯示一組點群資料,但是會有很多點)。

用滑鼠左鍵對左邊的白色圓中點一下, 得出來的資料是圓的點群資料。

用滑鼠左鍵對下圖中任意的黑色部分點一下, 得出來的資料是一個大圓與 四個小圓的點群資料。

※物件線量測:用滑鼠左鍵在『影像量測』視窗中點一下,QV250 會以該點自動尋找邊界,然後將該邊界內的資料回歸出一條線。

以下圖為例

用滑鼠左鍵對圖中任意的白色部分點一下, QV250 自動尋找邊界的結果是 紅色框,框內範圍回歸出一條藍色的線資料。

用滑鼠左鍵對圖中黑色的線點一下, QV250 自動尋找邊界的結果是紅色框,框內範圍回歸出一條藍色的線資料。

我們一般在量測工件時,因為倍率夠大,所以在『影像量測』視窗中看到的 圖通常只是工件的一小部分,※物件線量測適用於黑白輪廓分明且長度很長的工 件,這樣的工件在『影像量測』視窗中看到的會是黑與兩部分。下圖紅色框是『影 像量測』視窗中看到的範圍,用※物件線量測來測量速度會比其他方法快。

如果我們對一個『非線』的資料用※物件線量測來測量,那麼所得到的資料可能不是您想要的,例如用滑鼠左鍵對一個圓點一下, QV250 將根據所尋到的邊界回歸出一條圓的中分線。

用滑鼠左鍵對一個橢圓點一下, QV250 將根據所尋到的邊界回歸出一條橢圓長軸的中分線。

用滑鼠左鍵對一個不規則的白色部分點一下, **QV250** 將根據所尋到的邊界回歸出一條線。

○。物件圓量測:用滑鼠左鍵在『影像量測』視窗中點一下,QV250 會以該點自動尋找邊界,然後將該邊界內的資料回歸出一個圓。

用滑鼠左鍵對白色圓中點一下, 得出來的資料是圓的資料。

○ 物件橢圓量測:用滑鼠左鍵在『影像量測』視窗中點一下,QV250 會以該點自動尋找邊界,然後將該邊界內的資料回歸出一個橢圓。

用滑鼠左鍵對白色圓中點一下, 得出來的資料是橢圓的資料。

◆物件形心量測:用滑鼠左鍵在『影像量測』視窗中點一下,QV250 會以該點自動尋找邊界,然後將該邊界內的資料回歸出一個形心。

用滑鼠左鍵對白色部分點一下, 得出來的資料是該部分形心的資料(一個點資料)。

○□□□□□方框量測

方框量測是利用方框內所有黑白邊緣的資料來做回歸。

方框點群量測:用滑鼠左鍵在『影像量測』視窗中圈選一黃色方框,QV250會自動將方框內的點群資料顯示出來(只會顯示一組點群資料,但是會有很多點)。

在幾何視窗所顯示出來的點資料。

☐ 方框線量測:用滑鼠左鍵在『影像量測』視窗中圈選一黃色方框,QV250 會自動將方框內的所有線資料顯示出來。

○ 方框圓量測:用滑鼠左鍵在『影像量測』視窗中圈選一黃色方框, QV250 會自動將方框內的所有的圓資料顯示出來。此方法適用於同一個畫面 內很多的圓,將非常有效率。

- 方框橢圓量測:用滑鼠左鍵在『影像量測』視窗中圈選一黃色方框,QV250 會自動將方框內的所有的橢圓資料顯示出來。
- 一方框弧量測:用滑鼠左鍵在『影像量測』視窗中圈選一黃色方框,QV250會自動將方框內的所有的弧資料顯示出來。

- ■自動點量測工具:利用影像處理自動尋找黑白對比度最高值,加入點的資料。
- 自動線量測工具:利用影像處理自動尋找黑白對比度最高值的點,加入線的資料。
- □自動圓量測工具:利用影像處理自動尋找黑白對比度最高值的點,加入圓的資料。
- □自動橢圓量測工具:利用影像處理自動尋找黑白對比度最高值的點,加入橢圓的資料。
- 自動弧量測工具:利用影像處理自動尋找黑白對比度最高值的點,加入弧的資料。

/ [○ ○ ○ ● 測工具

一點量測工具:用滑鼠左鍵在『影像量測』視窗中點一下,會出現第一個綠色方框,再用滑鼠左鍵點一下,會出現第二個綠色方框,可以用滑鼠左鍵拖曳綠色方框,QV250會自動將判斷兩個方框連線的黑白對比最大值,最後按滑鼠右鍵輸入該點資料。

□ 線量測工具:加入線的資料。

同點量測工具一樣,用滑鼠左鍵輸入兩個方框後,拖曳兩端點來找到最適合的線,也可以拖曳兩旁的虛線來改變回歸的大小範圍,最後按滑鼠右鍵輸入該線的資料。

◎圓量測工具:用滑鼠左鍵輸入三個方框後,拖曳三個端點來找到最適合的圓,也可以拖曳虛線大圓及虛線小圓來改變回歸的大小範圍,最後按滑鼠右鍵輸入該圓的資料。

◎ 弧量測工具:用滑鼠左鍵輸入三個方框後,拖曳三個端點來找到最適合的弧,也可以拖曳虛線大弧及虛線小弧來改變回歸的大小範圍,最後按滑鼠右鍵輸入該弧的資料。

橢圓量測工具:用滑鼠左鍵輸入三個方框後,拖曳三個端點來找到最適

合的橢圓,也可以拖曳虛線大橢圓及虛線小橢圓來改變回歸的大小範圍,最後按 滑鼠右鍵輸入該橢圓的資料。

■鎖住回歸物件

若量測的物體太大而無法一次顯示在螢幕上,按下此鍵可告知之電腦目前正 在量測同一物體。

➡影像黑白互换

黑色的影像變成白色的;白色的影像變成黑色的。

影像處理設定

根據不同的物體有不同的設定。

在毛邊雜點控制中有兩個選項:『雜點篩選』與『不篩選』,若選『雜點篩選』, 則會進行雜點篩選;若選『不篩選』,則將保留所有原始資料。

篩選公差:可以根據設定的公差來處理毛邊雜點。在公差外的雜點會被濾除,對於毛邊處理有很大的幫助。

灰度值控制:不同的灰度方法選擇。

手動灰度值:由使用者自行決定灰度值。

面積:小於該數值的資料刪除。

取樣率:保留的點資料比例。

邊界敏感範圍:調整 等自動測量工具的黃色方框大小; 範圍顯示 的打勾與否則是黃色方框的顯示與否。

҈≛清圖

將『影像量測』視窗內的量測資料清除。

──顯示尺規

顯示或隱藏『影像量測』視窗內的紅色十字尺規。按住 Shift 鍵,可以移動『影像量測』視窗內的紅色十字尺規。在尺規為顯示的狀態下,可以按鍵盤的空白鍵『Space Bar』輸入十字線中心點的點座標。

幾何量測

幾何量測視窗顯示量測工件的幾何圖像。我們在影像量測視窗中得到的點線圓弧等資料,可以在幾何量測視窗求得距離、角度等資料。

黄色十字線代表目前影像量測視窗的中心點,相對的,影像量測視窗顯示該 點的影像。

對幾何量測視窗中的任何一個物件按下滑鼠左鍵,在物件列表中便會即時顯示該物件的的屬性。

②復原

將物件列表中刪除的資料救回

框選視窗

在『幾何量測』視窗中框選局部視窗放至最大

□最適化視窗

預覽整個『幾何量測』視窗內的圖形

X刪除

在『幾何量測』視窗中,滑鼠指定的物件會變成紫紅色,按下『Delete』鍵後,可將物件刪除。

ጆ框選刪除

被框選的物件顏色會變成黃色,再按下『Delete』鍵,可將選取的物件刪除。

* 點

輸入或者呼出一個點,並計算出其座標。按下,我們可以在『座標顯示』 視窗看到如下的訊息[0/1:0/1],即知道我們要給系統一點來得到此一物件(一個點)。 有兩種方式來讓系統知道:一個是在影像量測視窗中按滑鼠左鍵來輸入一個點; 另一個則是在幾何量測視窗中按滑鼠右鍵來呼出一個點。 物件摘要:X座標、Y座標

/直線

呼出兩點連成一線,並計算出兩點間距離。按下/,我們便可以看到如下的訊息**02:0/1**,即知道我們要給系統兩點來得到此一物件(一條線)。

在影像量測視窗中按滑鼠左鍵來輸入點,按滑鼠右鍵開始回歸一條線。

物件摘要:長度,起點X座標、Y座標,終點X座標、Y座標,DX(X方向偏移量),DY(Y方向偏移量)

呼出至少任意不共線三點,求出一圓。按下○,我們便可以看到如下的訊息 0/3:0/1,即知道我們要給系統三點來得到此一物件(一個圓)。

在影像量測視窗中按滑鼠左鍵來輸入點,按滑鼠右鍵開始回歸一個圓。

物件摘要:圓心 X 座標、Y 座標,直徑、半徑、大半徑、小半徑、真圓度和面積。

(弧

輸入或者呼出至少任意三個點,可計算出圓心,半徑,弧長及夾角。按下⁽⁾, 我們便可以看到如下的訊息<mark>0/3:0/1</mark>,即知道我們要給系統三點來得到此一物件, 輸入或者呼出的順序為『端點』『端點』『』。

◎可調整 3 → 3 點輸入之點數設定

物件摘要:圓心 X 座標、Y 座標,直徑、半徑、起始角度、終止角度、夾角和弧長。

○橢圓

輸入或者呼出至少任意不共線五點,求出一橢圓,並計算出圓心座標及長徑、短徑和面積。按下○,我們便可以看到如下的訊息<mark>0/5:0/1</mark>,即知道我們要給系統五點來得到此一物件(一個橢圓)。

◎調整 3 → 多點輸入之點數設定,若調成10,則須十點才能得到一個橢圓。

物件摘要:圓心X座標、Y座標,長軸、短軸和面積。

~ B-Spline 曲線

可視需求輸入或者呼出至少3點以求出曲線長度、平滑度、曲線種類,輸入 點數越多,則曲線越精確。按下心,我們便可以看到如下的訊息[0/3:0/1],即知道我 們要給系統三點來得到此一物件。

- ◎可調整◎ →多點輸入或者呼出之點數設定
- ◎對心快按兩次,會出現一對話框,可調整 B-Spline 的平滑度,越高代表回歸出來的線會越平順。

物件摘要: 階數和平滑率。

一回歸直線

任選至少三點,則自動生成回歸線。按下[×],我們便可以看到如下的訊息 0/3:0/1,即知道我們要給系統三點來得到此一物件。

◎可調整◎ ・多點輸入或者呼出之點數設定

物件摘要:長度,起點 X 座標、Y 座標,終點 X 座標、Y 座標,DX(X 方向 偏移量),DY(Y 方向偏移量),平均偏移量,最大偏移量,最小偏移量

點群

輸入至少任意三個點成為一組點群。按下,我們便可以看到如下的訊息 0/3:0/1,即知道我們要給系統三點來得到此一物件。

◎可調整 3 → 多點輸入或者呼出之點數設定

物件摘要:點數

一兩點連線中點

輸入或者呼出兩個點決定一條線,並計算出其兩點間距離及中點座標。先按下,再按下一,我們便可以看到如下的訊息**0/2:0/1**,即知道我們要給系統兩點來得到此一物件(一個點)。

物件摘要:中點 X 座標、Y 座標

♪點線距離

先輸入或者呼出第一個點(A點),再輸入或者呼出兩個點決定一條線(B線), 則可計算出 A點到 B線之距離及 B線的長度。,再按下↓,我們便可以看到如 下的訊息0/3:0/2, 即知道我們要給系統三點來得到兩個物件(一個點和一條線)。

物件摘要:長度,起點X座標、Y座標,終點X座標、Y座標,DX(X方向偏移量),DY(Y方向偏移量)

△點圓切線

先輸入或者呼出一個點,再輸入或者呼出至少任意不共線三點確定一個圓,則可求出此點到圓的兩條切線。按下^Q,我們便可以看到如下的訊息<mark>0/4:0/2</mark>,即知道我們要給系統四點來得到兩個物件(一個圓和一點)。

◎可調整᠍→多點輸入或者呼出之點數設定

物件摘要:長度,起點 X 座標、Y 座標,終點 X 座標、Y 座標,DX(X 方向偏移量),DY(Y 方向偏移量)

×兩線交點

先輸入兩點,決定第一條線,再輸入兩點,以決定第二條線,借此求出兩線的交點座標、夾角及補角(兩條非平行線才有交點)。按下×,我們便可以看到如下的訊息D/4:0/2,即知道我們要給系統四點來得到兩個物件(兩條線)。

物件摘要:交點 X 座標、Y 座標、夾角, 180 度補角, 360 度補角

※ 角平分線

先輸入或者呼出兩點 (1、2) 確定一條直線,再輸入或者呼出兩點 (3、4) 確定另一條直線,則以1、3點與2、4點之間各找到夾角的中點並求出連線。按下減,我們便可以看到如下的訊息 0/4:0/2, 即知道我們要給系統四點來得到兩個物件(兩條線)。

物件摘要:長度,起點X座標、Y座標,終點X座標、Y座標,DX(X方向偏移量),DY(Y方向偏移量)

→ 兩線平均距離

先輸入或者呼出兩點 (1×2) 確定一條直線,在輸入或者呼出兩點 (3×4) 確定另一條直線,則以 1×3 點與 2×4 點之距離求出平均距離。按下 1×4 ,我們便可以看到如下的訊息 1×4 ,即知道我們要給系統四點來得到一個物件(兩條線和兩線距離的複合物件)。

物件摘要:第一線長度,起點X座標、Y座標,終點X座標、Y座標,DX(X方向偏移量),DY(Y方向偏移量),第二線長度,起點X座標、Y座標,終點X座標、Y座標,DX(X方向偏移量),DY(Y方向偏移量)

♀圓線距離

先輸入或者呼出兩點求一直線,再輸入或者呼出至少任意不共線三點求一圓,則可求得圓心到直線的距離。按下^②,我們便可以看到如下的訊息<mark>0/5:0/2</mark>,即知道我們要給系統五點來得到兩個物件(一個圓和一條線)。

◎可調整 ●多點輸入或者呼出之點數設定

物件摘要:長度,起點 X 座標、Y 座標,終點 X 座標、Y 座標,DX(X 方向偏移量),DY(Y 方向偏移量)

□圓線交點

先輸入或者呼出兩點 (1、2) 求一線,再輸入或者呼出圓上的任意的三點決定一圓,借此求出與圓的交點。再按下♡,我們便可以看到如下的訊息0/5:0/2,即知道我們要給系統三點來得到兩個物件(一個圓和一條線)。

◎可調整 3 → 3 多點輸入或者呼出之點數設定

物件摘要:交點X座標、Y座標

② 兩圓 交點

先輸入或者呼出至少任意不共線三點決定第一個圓,再輸入或者呼出至少任意不共線三點決定第二個圓,借此計算出圓與圓交點。按下◎,我們便可以看到如下的訊息<mark>0/6:0/2</mark>,即知道我們要給系統六點來得到兩個物件(兩個圓)。

◎可調整 3 → 3 多點輸入或者呼出之點數設定

物件摘要:交點 X 座標、Y 座標

∞兩圓心距離

先輸入或者呼出至少任意不共線三點確定一個圓,再輸入或者呼出至少任意不共線三點確定另外一個圓,則可求出兩圓心的距離。按下[©]。,我們便可以看到如下的訊息<mark>0/6:0/2</mark>,即知道我們要給系統六點來得到兩個物件(兩個圓)。

◎可調整 3 → 3 多點輸入或者呼出之點數設定

物件摘要:長度,起點X座標、Y座標,終點X座標、Y座標,DX(X方向偏移量),DY(Y方向偏移量)

◆兩圓外切線

先輸入或者呼出至少任意不共線三點確定一個圓,再輸入或者呼出至少任意 不共線三點確定另外一個圓,則可求出兩圓的外切線。按下[◎],我們便可以看到 物件摘要:長度,起點 X 座標、Y 座標,終點 X 座標、Y 座標,DX(X 方向偏移量),DY(Y 方向偏移量)

┷ 輸入座標

直接將點、線或圓的座標輸入。

34顯示資料群組編號

顯示資料群組編號

隱藏資料群組編號

△顯示十字線

顯示十字線

隱藏十字線

下拉主選單

檔案

建立新專案

將目前所有量測資料清除,建立一個新的專案。

♥開啓舊專案

開啓已經存檔的專案。

闡儲存專案

將目前的專案以原來的檔名存檔。

另存爲新專案

將目前的專案改變檔名另存新檔。

DXF 匯出 DXF 格式

將檔案儲存成 DXF 檔,可轉至 CAD/CAM 做後續的編修。

™匯出至 Word

開啓一個新的 Word 檔案,將量測資料轉至 Word。

■ 産出至 Excel

開啟一個新的 Excel 檔案,將量測資料轉至 Excel。

結束

離開系統。

座標轉換

在每一次新的量測工作開始前,須先設定一個座標系,而每一個座標系的原點則視使用者設定的觀點爲原則參考。

└機械原點

按下[⊥] 鍵後,之前所設定的座標系會恢復成原始之系統座標系(恢復成機械原點的座標系)。

△座標平移

按下[⊥] 鍵後,呼出一點使原來座標系平移至原點爲輸入點建立之新座標系。

範例

按下└ 鍵後,對 C 點按下滑鼠右鍵,即以 C 點為新座標原點。

♣ 兩點決定 X 軸

按下¹ 。 鍵後,呼出一點(1)使成爲新座標原點,再呼出第二點(2),1、2點連線方向為新的X軸,方向以第一點至第二點爲正方向。

範例

按下^{↓→} 鍵後,對 B 點按下滑鼠右鍵使成爲新座標原點,再對 C 點按下滑鼠右鍵, B、C 點連線方向為新的 X 軸,方向以 B 點至 C 點爲正方向。

□ 雨點決定 Y 軸

按下¹ 鍵後,呼出一點(1)使成爲新座標原點,再呼出第二點(1),1、2點連線方向為新的Y軸,方向以第一點至第二點爲正方向。

範例

按下[□] 鍵後,對 B 點按下滑鼠右鍵使成爲新座標原點,再對 C 點按下滑 鼠右鍵,B、C 點連線方向為新的 Y 軸,方向以 B 點至 C 點爲正方向。

座標旋轉

按下 鍵後,呼出兩點 $(1 \cdot 2)$ 使座標系旋轉,兩點連線爲新的 X 軸方向,原點不變。

範例

按下¹ 鍵後,對 B 點按下滑鼠右鍵,再對 C 點按下滑鼠右鍵,使座標系旋轉 BC 連線與 X 軸的夾角,原點不變。

≟線點交點1

範例

按下追 鍵後,先對 B 點按下滑鼠右鍵,作爲 Y 軸上任一點,再對 C 點按下滑鼠右鍵,再對 A 點按下滑鼠右鍵,使座標系旋轉 CA 連線作爲 X 軸,方向以 C 至 A 爲正方向,由 B 點往 X 軸垂直連線交點即爲原點,垂直線爲 Y 軸。

₩線點交點 2

接下 鍵後,呼出之第一點(1)爲原點,再呼出二點(2、3)連線作爲 X 軸的平行軸,方向以第二點至第三點爲正方向,以此原點與 X 軸的平行軸建立一個新的座標系。

範例

按下 鍵後,先對 B 點按下滑鼠右鍵爲原點,再對 C 點按下滑鼠右鍵,再對 A 點按下滑鼠右鍵,CA 連線作爲 X 軸的平行軸,方向以 C 點至 A 點爲正方向,以此原點與 X 軸的平行軸建立一個新的座標系。

+ 二點中點

按下⁺ 。 鍵後,呼出兩點連線建立 X 軸,方向以第一點至第二點爲正向,以通過兩點中心垂直線爲 Y 軸,中點爲原點建立座標系。

範例

按下 $^{+}$ 。 鍵後,先對 C 點按下滑鼠右鍵,再對 A 點按下滑鼠右鍵, C 乙基線建立 X 軸,方向以 C 點至 A 點爲正向,以通過 C 不點連線中心垂直線爲 Y 軸,中點爲原點建立座標系。

二線交點

範例

按下述。 鍵後,先對 C 點按下滑鼠右鍵,再對 D 點按下滑鼠右鍵,CD 連線建立 X 軸,方向以 C 點至 D 點爲正方向,對 B 點按下滑鼠右鍵,再對 A 點按下滑鼠右鍵,BA 連線與 X 軸之交點即爲原點,垂直線爲 Y 軸建立座標系。

些再次平移座標

進行其他座標轉換後,再按下^上呼出某點,平移座標原點,建立新座標系。 範例

我們先進行以兩點決定 Y 軸的座標轉換,再按下₩平移座標原點,再對

校正處理

- 〇線性校正:以線性的方法校正。
- 載入校正參數:讀取某一組特定焦距的校正參數。
- 攣載入校正檔 1。
- ◆載入校正檔 2。
- ⇒載入校正檔 3。
- ҈載入校正檔 4。
- № 校正參數存檔:將目前焦距的校正參數存檔。
- ❤儲存校正檔 1。
- ❤儲存校正檔 2。
- ❤儲存校正檔 3。
- ❤儲存校正檔 4。

語言

英 English

英文:切換到英文介面。

X Triditional Chinese

繁體中文:切換到繁體中文(Big5碼)介面。

Simplified Chinese

簡體中文:切換到簡體中文(GB碼)介面。

說明

②QV250 說明

呼叫使用手册。

₹關於 3DFAMILY

若網路的連線正常,將會呼叫預設瀏覽器,開啟www.3dfamily.com。

Q關於 QV250

關於此版本的資訊。

第3章 基本系統操作

本章提供您對 QV250 系統操作程式的介紹,您可清楚瞭解 QV250 系統的軟硬體搭配,進而全盤且概括性的瞭解 QV250 系統。

本章重點為:

- ▶ QV250 系統操作流程
- ▶ QV250 系統校正

量測前置作業

啓動系統

正確的順序如下

- 開啟電腦
- 啟動機台
- 開啓程序

開啓電腦,進入 Window XP,將機台啟動,用滑鼠雙擊在桌面的捷徑 ■ ,或者您也可以從『開始 | 所有程式 | 3DFAMILY | QV250 | QV250 量測系統』執行本系統。

進入後如圖所示:

當環境視窗出現後,您就可以開始使用本系統了。

影像校正

線性校正

- 1. 首先將校正塊置於掃描平台上。
- 2. 切換到『影像量測』視窗,並按下攝影快速鍵

5. 選擇校正塊上面一個合適大小的標準圓,用滑鼠左鍵點一下那個圓。

- 6. 移動 X 軸,讓該標準圓離開原來的位置,用滑鼠左鍵點一下那個圓。
- 7. 移動 Y 軸,讓該標準圓離開原來的位置,用滑鼠左鍵點一下那個圓。
- 8. 重覆步驟 6. 與步驟 7. ,最好能讓該標準圓在螢幕的四個角落都出 現。
- 9. 至少出現過三個不同位置的圓後,按滑鼠右鍵。
- 10. 出現『校正成功』對話框。

離開系統

正確的順序如下

- 關閉程序(先將必要的檔案存檔)
- 關閉機台
- 電腦關機

在所有量測結束後,如欲離開本系統,請按視窗右上角型,即可離開,或按『ALT+F4』鍵亦可結束使用,或按下系統下拉功能表的『檔案 | 結束』,但請注意所有檔案的存檔動作是否已執行完畢。關掉機器後再將電腦關機。

量測前置作業

▶ 載入量測資料:載入已存檔的資料,可選取『檔案 │ 開啟舊檔案』。

- ▶ 清除所有量測資料:可選取『檔案 | 建立新專案』清除(系統會自動 詢問是否儲存目前專案)。
- ▶ 刪除單筆量測物件:在量測過程中,如遇有工件量測值有所問題,可 將欲刪除的物件呼出(被呼出的物件會變成紫色),再按『Delete』鍵, 進行刪除。
- in mm d.d

 ▶ 單位切換:按下 或 可進行公英制的單位轉換;按下 如 或 dms
 可做『度』與『度、分、秒』之切換,單位顯示在『物件列表』
 內。

開始量測

在開始量測之前,我們可依需求測定不同的要素,例如:點、線、圓、中點、曲線……等等。

量測方式的設定:可由下拉式選單『幾何量測』或『影像量測』中選取; 您也可以直接點選快速工具列的『幾何量測』或『影像量測』。

儲存量測資料

在量測中或量測完畢我們可將專案儲存起來,以後需要再開啟,選取『檔 案 | 儲存專案』或 快速鍵進行儲存工作。

在量測中或量測完畢我們除了將資料之儲存起來,也可以通過『檔案 | 匯出至 Word』或『檔案 | 匯出至 Excel』將資料轉換成 Word or Excel 文件,

進行編排後再行儲存或列印。或者由『檔案 | 匯出 DXF 格式』或 快速鍵儲存成 DXF 檔,使 AutoCAD 也可以共用資料。

▶ 注意:匯出至 WORD 及 EXCEL 時,幾何量測的圖是目前的可視範圍,並不是所有物件都會在圖上,若您要讓所有物件都出現在該圖

上,請先按 快速鍵,再按 域 操速鍵輸出。

第4章 檢測

本章介紹手動版的檢測。透過本章的介紹,您可以利用 **OVM25** 的檢測功能來對工件運行量測。

本章重點為:

- ▶ 檢測
- > SPC

檢測

快速入門

- 1. 用滑鼠左鍵單擊開始學習 🖗 (學習將記住接下來的操作步驟)。
- 2. 選定座標系。
- 3. 量測所需檢測的目標。
- 4. 在『物件列表』內用滑鼠雙擊所要管制的項目,載入 SPC。
- 5. 用 删除某個檢測步驟。
- 6. 學習模式中,用 █ 插入某個檢測步驟。
- 7. 用滑鼠左鍵按 , 結束學習。
- 用滑鼠左鍵單擊▶,將量測平台搖到指示器的位置,再對影像視窗點一下,OVM25會自動將資料載入,直到完成所有的學習步驟。
- 用滑鼠左鍵單擊[▶],機台將按先前之操作步驟逐步循環檢測,直到 您用滑鼠左鍵按^赵結束檢測。

詳細流程解說

假設今天我們要做檢測的對象為一片電路板,請依照下列步驟實行。

- 1. 將第一片電路板(作為之後的量測位置標準)固定至量測平台上(使用夾具固定,避免電路板滑動,也可以使用黏土來固定。
 - ▶ 定義基準面

▶ 與第一片電路板只能成水平或垂直平移

▶ 與第一片電路板不可以翻轉(正面與反面不一定是一樣的)

- 2. 對第一片電路板,我們首先要做的是定義基準面,那麼定義基準面 有何作用呢?因為沒有夾具,所以每片電路板在量測平台的位置不 盡相同,所以我們得告訴電腦程式:哪一個位置才是標準點,好讓 程式在電路板有角度旋轉時,不至於誤判。
- 3. 在沒有夾具的情況下,我們可以使用三種方式來定義基準面:『十字線』、『定義 X 軸』和『定義 Y 軸』。
- 4. 按住鍵盤的 Shift 鍵,後用滑鼠左鍵移動螢幕的紅十字線,對準工件 直角邊緣,按滑鼠右鍵結束定義基準面。

■有對準工件直角邊緣

沒有對準工件直角邊緣

- 5. 先找一個左邊的圓,按滑鼠右鍵定義第一基準點;再先找一個右邊的圓,按滑鼠右鍵定義第二基準點。第一基準點與第二基準點的連線即為我們定義的 X 軸。
 - ▶ 第一片電路板全圖。

▶ 對 B 孔按滑鼠右鍵定義第一基準點。

▶ 對 C 孔按滑鼠右鍵定義第二基準點。

▶ 第一基準點與第二基準點的連線(BC 連線)即為我們定義的 X 軸。

6. 同理,我們找 B 孔,按滑鼠右鍵定義第一基準點;再找 A 孔,按 滑鼠右鍵定義第二基準點。第一基準點與第二基準點的連線 BA 連 線即為我們定義的 Y 軸。

- 定義完基準面後,對第一片電路板所要量測的孔位,尺寸開始學習的功能,用滑鼠左鍵按[□],結束學習。
 - 10. 將第一片電路板從量測平台上拿開,再把第二片電路板放入量測平台
- 8. 用滑鼠左鍵單擊 ¸ 或 ¸ ,在第二片電路板上尋找基準點(第一片電路板使用哪條十字線或是哪兩個孔位,之後的電路板也要用相同的十字線或是孔位)。
- 9. 輸入完基準點(線)後,便可以根據指示器的數據將機台搖到正確的 位置,再對影像視窗點一下,QV250 會自動將資料載入,直到完成 之前所有的學習步驟。
- 10. 按下ᢨ結束檢測。

SPC 功能鍵

□建立 SPC 專案:清除所有 SPC 資料,建立一個新的 SPC 專案。

♥開啟 SPC 專案:開啟一個已存在的 SPC 專案。

■儲存 SPC 專案:將目前的 SPC 專案儲存。

■ 匯出至 Excel: 將目前 SPC 專案的資料匯出至 Excel。

■ 匯出至 Excel: 將目前 SPC 專案的資料匯出至 Excel。

Ⅲ匯出至 Word: 將目前 SPC 專案的資料匯出至 Word。

※刪除最後一列資料(一列有五筆資料)。

₩刪除最後一筆資料。

※X-R 圖:切換到平均值與全距管制圖。

※Xm-R 圖:切換到中位值與全距管制圖。

※X-Rm 圖:切換到個別值與移動全距管制圖。

※X-S 圖:切換到平均值與標準差管制圖。

在圖形數據分頁,對管制圖按滑鼠右鍵會有三個功能:

FullView
3DView
2DView

Full View:將資料圖以最適合的縮放比例顯示。

3D View:以立體的圖示繪出圖形。

2D View:以平面的圖示繪出圖形(預設是 2D View)。

2D View

3D View

實例演練

我們以檢測兩個圓的半徑來作為案例,說明 SPC 統計資料分析該如何使用。

- 1. 開啟程式。
- 2. 按下功能表『影像量測 | 攝影』開始攝影。

3. 按下『影像量測』工具列的快速鍵^{[[2]},在第一個圓框一下,量測出來的資料會在『物件列表』出現。

4. 在『資料樹狀圖』用滑鼠對『半徑』快按兩下。

5. 按確定。

6. 在管制項目填入名稱,例如:半徑一或 R1。在標準值、上限及下限都填入想管制的數據。

- 7. 重覆步驟 4. 到步驟 6. ,將第二個圓的管制項目定為 R2。
- 8. 再來就依序框選第一個圓及第二個圓,直到結束。

分析數據

在『分析數據』分頁,資料表格分為3個部分:上面記錄著量測資料的分析數據,列出一些常用的製程指標,如 Ca, Cp 和 CpK;中間記錄著製程準確度、製程精密度和製程能力指數;下麵則記錄我們控管資料的序號、管制項目、標準值、資料筆數、不合格數及其百分比。

圖形數據

平均值與全距管制圖(X-R)

品質數據可以合理分組時,為分析或管制製程平均使用 X 管制圖,對製程變異用 R 管制圖。

中位值與全距管制圖(Xm-R)

與 X-R 管制圖相同,惟 X 管制圖檢出力較差,但計算較為簡單。

個別值與移動全距管制圖(X-Rm)

- 1. 品質數據不能合理分組時,如下列情況使用 X-Rm 管制圖:
- 一次只能收集到一個數據,如生產效率及耗損率。

製程品質極為均勻,不需多取樣本,如液體濃度。

取得測定值既費時成本又高,如複雜的化學分析及破壞性檢驗。

2. 品質數據能合理分組時,為提高檢出力,盡量使用 X-R 管制圖。

平均值與標準差管制圖(X-S)

與 X-R 管制圖相同,惟 S 管制圖檢出力較 R 管制圖大,但計算麻煩。 一般樣本大小 n 小於 10 使用 R 管制圖,n 大於 10 使用 S 管制圖。

資料表格

資料表格分為2個部分:上面記錄著每一筆量測的資料,每一行(row)有5個樣本,且每一行皆有統計該行的平均值與全距;下麵則記錄我們控管資料的序號、管制項目、標準值、資料筆數、不合格數及其百分比。

第5章 量測實例

在開始量測前,您應先熟習 QV250 的基本功能。利用本章的實例,您會更加熟練要如何量測。

手機外殼抄數(背光)

- 1. 啟動系統。
- 2. 開啟背光燈,關閉前光燈。
- 3. 按下功能表『影像量測 | 攝影』開始攝影。
- 4. 按下快速鍵

5. 再將滑鼠移到『影像量測』視窗點一下,系統會自動將影像二值化(黑 與白)並描繪出輪廓線(紅色),在『物件全覽圖』分頁中會顯示目前被 量測物件的相對位置。

7. 在量測好了之後,切換到『幾何量測』視窗,即可看到剛才量測出來 的點資料。

DXF 8. 按快速鍵 即可輸出成 DXF 檔供後續編修。

手機外殼內緣特徵線抄數(前光)

- 1. 啟動系統。
- 2. 開啟前光燈,關閉背光燈。
- 3. 按下功能表『影像量測 | 攝影』開始攝影。
- 4. 切換到『幾何量測』分頁按下快速鍵 ,可以在待量測物件的特徵 線上標出特徵點。
- **DXF** 5. 按快速鍵 即可輸出成 DXF 檔供後續編修。
- 利用前光描點的功能是在物件不透光且顏色相近,無法利用背光以二值化的方法來判定輪廓時使用,如果物件的顏色差異大,如黑與白,也可以用快速鍵

電路板檢測

當我們檢測時,可以分為『有夾具』跟『沒有夾具』兩種狀況。有夾具時, 需定義基準面;沒有夾具時,則需定義基準面。基準面的定義可以分為三種方式:『十字線』、『定義 X 軸』和『定義 Y 軸』。

有夾具

我們先以『有夾具』的狀況來示範電路板的檢測。

- 1. 檢測前,請先確認機台的電源、歸 HOME、校正都已設定完成。
- 2. 將電路板固定至夾具上。
- 3. 在『檢測』頁面按下₩。
- 4. 跳出『基準面的定義』視窗後,選擇『無』後,按『下一步』繼續。

- 5. 開始學習(包括 SPC 設定)。
- 6. 再按下₩結束學習。
- 7. 换另外一片電路板固定至夾具上。
- 8. 按下 ▼或 開始檢測。

沒有夾具

1. 十字線

- 1. 檢測前,請先確認機台的電源、歸 HOME、校正都已設定完成。
- 2. 将電路板用黏土固定至量測平台上。
- 3. 在『檢測』頁面按下📮。
- 4. 跳出『基準面的定義』視窗後,選擇『十字線』後,按『下一步』繼續。

5. 按『確定』繼續。

- 6. 按下按下功能表『影像量測 │ 顯示十字線』 🕂 。
- 7. 按住鍵盤的 Shift 鍵,後用滑鼠左鍵移動螢幕的紅十字線,對準工件直

角邊緣,按滑鼠右鍵結束定義基準面。

8. 在按下滑鼠右鍵後,在『檢測』頁面會如下顯示。

9. 開始學習(包括 SPC 設定)。

- 10. 再按下 6 結束學習。
- 11. 換另外一片電路板固定至量測平台上。
- 12. 按下▶或♀開始檢測。

- 13. 尋找與第一片電路板相同位置的基準十字線,按滑鼠右鍵結束定義這 片電路板的基準面。接著便會進行檢測。
- 14. 爾後每放一片電路板至量測平台,重複步驟 13。

2. 定義 X 軸

- 1. 檢測前,請先確認機台的電源、歸 HOME、校正都已設定完成。
- 2. 將電路板用黏土固定至量測平台上。
- 3. 在『檢測』頁面按下◎。
- 4. 跳出『基準面的定義』視窗後,選擇『定義 X 軸』後,按『下一步』繼續。

5. 按『確定』繼續。

6. 對左邊的孔按下滑鼠右鍵,在『檢測』頁面會如下顯示。

7. 對右邊的孔按下滑鼠右鍵,在『檢測』頁面會如下顯示。

- 8. 開始學習(包括 SPC 設定)。
- 9. 若要進行 SPC 管制分析,在物件列表上,對欲進行管制分析的項目雙擊滑鼠左鍵。在此是以兩圓的圓心距長度為例。
- 10. 按『確定』繼續。

11. 設定 SPC,如下圖所示。

- 12. 若欲刪除某一步驟,則先在『檢測』頁面點選欲刪除的項目後,按下即可。不過要考慮到的是:刪除此物件後,之後依據此物件衍生出來的項目便都會不正確了。例如:刪除步驟 9 上面的圓,那麼靠這個圓生成的兩圓的圓心距便無法計算出來了。所以在刪除之前,要先判斷是否之後有物件是依據此物件而生成的。
- 13. 再按下歸結束學習。
- 14. 换另外一片電路板固定至量測平台上。
- 15. 按下▶或♀開始檢測。
- 16. 尋找與第一片電路板相同位置的基準孔,按滑鼠右鍵結束定義這片電路板的 X 軸。接著便會進行檢測。
- 17. 爾後每放一片電路板至量測平台,重複步驟 12。

3. 定義 Y 軸

- 1. 檢測前,請先確認機台的電源、歸 HOME、校正都已設定完成。
- 2. 将電路板用黏土固定至量測平台上。
- 3. 在『檢測』頁面按下歸。
- 4. 跳出『基準面的定義』視窗後,選擇『定義 Y 軸』後,按『下一步』繼續。

5. 按『確定』繼續。

6. 對下麵的孔按下滑鼠右鍵,在『檢測』頁面會如下顯示。

7. 對上面的孔按下滑鼠右鍵,在『檢測』頁面會如下顯示。

- 8. 開始學習(包括 SPC 設定)。
- 9. 再按下歸結束學習。
- 10. 换另外一片電路板固定至量測平台上。

- 11. 按下▶或♀開始檢測。
- 12. 尋找與第一片電路板相同位置的基準孔,按滑鼠右鍵結束定義這片電路板的Y軸。接著便會進行檢測。
- 13. 爾後每放一片電路板至量測平台,重複步驟 12。

第6章 簡易問題排除

本章列出一些簡易問題的處理方法,讓您能夠對系統做一些基本的維護, 良好的使用習慣,能讓機器的使用壽命增長。

若以下的答案無法解決您的問題,請提供您的機器型號、軟體版本、作業 系統和您所經歷問題的詳細過程及錯誤訊息。

- 1. 為何我的程式無法開啟?
- ▶請檢查機台與電腦是否連接正常?機台的電源是否開啟?機台的 USB 線 是否脫落?
- 2. 為何影像擷取裝置錯誤?
 - ▶請檢查影像線是否脫落?
- 3. 為何無法讀取光學尺的數據?
 - ▶請先檢查機台的 USB 線是否脫落?
- 4. 為何資料顯示的數據與實際工件的尺寸相差很大?
 - ▶請先確認系統的數據單位是英制還是公制?
 - ▶檢查是否轉換了放大倍數而未重新校正。
 - ▶檢查工件是否在工作台上固定良好,沒有移動到位置。
- 5. 為何機台的燈光不亮?
 - ▶請檢查燈源的開關是否開啟?
 - ▶請轉動燈源的亮度調節紐。
 - ▶請聯絡本公司技術人員。
- 6. 為何影像量測不能進行?
 - ▶請檢查上、下燈源的亮度是否太暗?
- 7. 為何繪出的圖形與工件左右相反?
 - ▶請重新校正系統。
 - ▶可能是光學尺的 JUMP 脫落,或沒有設定正確,請聯絡本公司技術人員。
- 8. 為何影像視窗內的工件的影像會出現很多的細橫條?
- ▶請先確定您機台的 CCD 的種類是『PAL』或『NTSC』,再將『CCD 設定』 裡面『相機』設定為『PAL』或『NTSC』。
- 9. 為何要輸出到『Word』或『Excel』時出現『尚未調用 CoInitialize』, 並

且無法輸出?

▶請先確定您的電腦已經安裝 Word 及 Excel。